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The continuation of this wedge scattering research is proceeding as proposed, with
several significant accomplishments and findings to date. The nature of this rigorous
mathematical approach to scattering problems is such that original formulation is very
important and usually very slow to evolve. For example, the previous work summarized
in the report [61] had several abandoned and potentially useful starts, while the finished
product is substantial.

I. JOURNAL PAPER

A journal paper titled " Mellin Transform Solution for the Static Line-Source Excitation
of a Dielectric Wedge" has been submitted, revised, and accepted for publication in the
IEEE Transactions on Antennas and Propagation [62]. A conference paper also summa-
rizing these results was presented in July 1993 at the 1993 Radio Science Meeting in Ann
Arbor, MI.

II. GENERAL PENETRABLE WVEDGE

In order to make the most significant progress possible, our initial philosophy during
this first quarter of this research has been to concentrate on the most difficult aspect - the
truly arbitrary, penetrable wedge. The solution to the impedance boundary wedge could
then be extracted from the more general (and valuable) result. I have had scientific dialog
with two leading scattering theorists, Egon Marx [20-22,28] and Ismo Lindell [63], who
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have made recent contributions to this and related wedge scattering problems. I would
summarize the current (August 1993) thinking on the problem to be:

(1) The penetrable wedge problem remains one of the great unsolved canonical scat-
tering geometries.

(2) Numerical " solutions" are still proliferating, but are too messy and remoxed from
the physics to offer any important insight into the wave mechanisms that we hope
to uncover and understand.

Based on last year's work [61] with the Kontorovich-Lebedev transform, which is a su-
perposition of cylindrical waves, a general superposition of arbitrary plane waves has been
investigated as a suitable field representation. Such a (spatial) spectrum of propagating
(1k.I < ki) and evanescent (1k21 > kj) plane waves

= I dk. %j (k., kv)ei(k*•+kvy)

-00

where k' + k' = k? and j = 1, 2 denotes the two different media, may work in principle. A
rather novel approach is to apply a conformal transformation to the homogeneous wedge
region to obtain an effectively inhomogeneous half-space region. This results in a spatially
varying wavenumber appearing in the transformed Helmholtz equation

(V 2 + C2 (F)) 0(F) = 0.

This approach demonstrates all too well a conservation of work principle: the problem
can be cast in terms of the nice (familiar) Helmholtz operator with troublesome wedge
boundaries or as a simple planar boundary that constrains a messy partial differential
operator.

The lack of a rigorous solution technique to apply to the truly arbitrary wedge is disap-
pointing to us, and is probably a posteriori expected by some colleagues. Fortunately, we
can now confidently proceed with a new appreciation and respect for our primary goal of
this year's research project - the mathematical solution of the impedance boundary wedge.

III. PHYSICAL IMPEDANCE BOUNDARY CONDITION

The coupled difference equations (14), (17), and (18) on page 27 of the previous report
[61] are solved by first eliminating the function C(v):

A(v) sin(vlr) + B(v) cos(v7r) = cos[v(O' - 7r)]

k{A(v- +1) sin[(v - 1)sa] + B(v- 1)+cos[(vo- 1)a]

- .4(v) cos(va) + B(v) sin(ta) = 0.
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Application of an integral operator, such as the Laplace or Mellin inversion formula, elimi-
nates the troublesome v- 1 and v+ 1 and yields purely algebraic equations in the coefficient
functions A(v) and B(v). Finding such a transformation that also results in explicit ana-
lytic expressions that can be conveniently carried through the inverse Kontorovich-Lebedev
transform is an arduous task. Our present staius is that of completed inversions via both
the Laplace and the Mellin formulae, with results to date partially encouraging but still
too complicated. We have identified several alternatives, including an asymptotic approach
that lets Y = ir as it appears in the Kontorovich-Lebedev inversion, and concentrating on
large r. Adding to our motivation is the comforting knowledge that our well-defined bound-
ary value problem possesses a unique solution which is defined in a single, homogeneous
region of space. Also, the formulation and execution of the mathematics is rigorous and
complete.

IN. INHOMOGENEOUS OR PSEUDO-IMPEDANCE BOUNDARY

The source of the shifting of v to a - 1 and v + 1 in the above case of the Leontovich
boundary condition

)+ 0(r,a) = 0

is the 1/r factor from the normal derivative

On r 90"

The observation on page 28 of [61] that an inhomogeneous surface impedance that is
proportional to radius

9/ = r77'
avoids any difference equation in the transform coefficient functions. In this special case,
much asymptotic progress and physical interpretation can be accomplished, as indicated in
[61]. I did not emphasize this particular avenue, since it appears to be a problem contrived
to fit a solution, rather than the solution to a real physical problem. Although Felsen and
Marcuvitz [65] clearly recognized the analytic attractiveness of this "pseudo-impedance"
wedge circa 1973, 1 only recently (today!) discovered their passing mention of it. They
make no apology at all for any detachment from "reality." Perhaps I should not be so quick
to dismiss this curious variation on the impedance boundary wedge. In any event, we can
always return to this easier problem at a later date.
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